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Physics is experimental science

Isaac Newton

Basics in physics:
% Experimental results must be reproducible (old)

% Results of computations must be reproducible
(new)



... the more accurate the calculations becar_ne, _the
more the concepts tended to vanish into thin air

R.S. Mulliken (1965, Nobel Prize (1966))

in Molecular Scientists and Molecular Science: Some
Reminiscences

J. Chem. Phys. 43 S2 (1965)



Helium two-electron sequence (Z; e, e):
H=(Z =1), He (Z =2), Lit(Z = 3) etc




Non-relativistic Hamiltonian for 3 Coulomb charges

1 1 1 zZ Z 1
- A, — A, — L 2 4 =
oMy % 1 2 +

H = —
2me 2me n rn ro

Static approximation: My = oo

(M(Z:2) ~ 8000me)

The Schrodinger equation

HVY = EV



Helium Atom - non-relativistic ground state energy
(about 150 calculations in 1929 - 2020)
E —
—2.903724377034119598 311159245194 404 446 696 905 37

41 s.d. — Schwartz, Int. J Mod. Phys. E (2006) (UC Berkeley)
45 s.d. — the most accurate energy for the 3-body Schrodinger
equation, Nakashima-Nakatsuji, J Chem Phys (2007) (Tokyo)

13 s.d. — confirmed in 1/Z-expansion and by Lagrange Mesh — in
two different methods (H.O.P.4+-J.C.L.V.4-A.T. 2016) (Mexico)

35 (24) s.d. — confirmed by Aznabaev, Bekhaev, Korobov (2000-2),
Phys Rev A (2018) (Dubna, Kazakhstan-Russia),
22,000 terms, 100 digit arithmetic, ~ 10° parameters!



Nakashima-Nakatsuji data (2007-8), Z =1,2,...,10:

[1,—0.527751016544 37719659081456674751138304502]
[2,—2.903724377034 11959831115924519440444669690537]
[3, —7.279913412669 30596491945922100661168257235]
[4, —13.655566238423 58670208173019461215939136060]
[5, —22.030971580242 78154165570204356687037977599|
[6, —32.406246601898 53031055735796953025456601697
[7, —44.78144514877270464518576084895405677602812]
[8, —59.156595122757 92555854989244555952770090785]
[9, —75.531712363959 49110487801557953357656090977
[10, —93.906806515037 54942146918418000024106665170]



Three Questions:
(1) What about expectation values?

~ Six studies ONLY in ~ 90 years!! Still OPEN problem,
there are controversies ...

What about < §(r;) >7 — it defines probability of catalysis,
eg. at+e—....

(1) How to store energies and ABK parameters ~ 10° with
100 s.d. each if they would be known?

Can these calculations be repeated - when no variational
parameters known?

(I11) Do exist function(s) which generates these numbers?



Helium Atom (ground state energy)

~ 150 calculations in NRQED!

First calculation: E Hylleraas (1929, p.114)
E = —-2.9032

Last (and concluding but final) calculations:

Nakashima - Nakatsuji (2007-8) - Korobov (2018) - 35-44 s.d.

(it was checked and confirmed in Lagrange mesh method up to 13 s.d.)

E = —2.9037243770... (infinite mass)
E = —2.9033045577... (finite mass)

AEn.ss = 0.000420...
AEQep+rer = —0.000112... (Yerokhin — Pachucki,2010)
I



Mg'%*(magnesium) - (Z = 12)-two-electron lon (ground state energy)

First accurate calculation (in bold):
Thakkar-Smith (1977)
Last (and final(?)) calculation:

Turbiner-Lopez V-Olivares P (2016-18)
in 1/Z-expansion

(it was checked, confirmed and extended in Lagrange mesh method up to 13 d.d.)

E = —136.656 948312647 ... (infinite mass)
(T-S — > bold)
E = —136.6537880234... (finite mass)

AEp.ss = 0.0032...

AEQep+rer = —0.250... (Yerokhin — Pachucki,2010)
I
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Ground state energy vs Z for 1-, 2-, 3-electron atoms in NRQED in
static approximation. Critical charges marked by filled squares.

How to describe/interpolate these curves?
I



Ettore Majorana
(August 5, 1906 - March 25, 1938)



In fact, E Majorana asked (in his unpublished notes, circa
1930):

Can we interpolate the energy behavior at small and
large Z

using simple function but with high accuracy?

Majorana was the first who proposed to consider the charge Z
as continuous parameter.

Let us try to answer!



e At small Z (near threshold, the Schwinger theory: how the
level enter to continuum) :

there exists Zg > 0 for which the energy is given by the Puiseux
expansion at Z = Zg

E(Z) = Eg+p1(Z —Zg)+ 3 (Z — Zg)*? + po (Z — Zg)?

445 (Z — Z8)*?+p3(Z — Z8)3+q1 (Z — ZB)"/*+pa (Z — Zg)*+. ..

where Eg = E(Zp)
e Critical charge Zg is a value of Z which separates the domains
“existence (Z > Zg)/non-existence (Z < Zg)" of solutions in the
Hilbert space

79 = 0.904854

e F Stillinger and D Stillinger (qualitative, He, 1966, 1974)
o Y Cizek et al, A Turbiner at al (quantitative, He,Li 2010-1, 2016,
2019)

p1234 and g3 57 are calculated (2019)



e Critical charge Zg separates the domains “existence
(Z > Zg)/non-existence (Z < Zg)” of solutions of the
Schrédinger equation in Hilbert space

= algebraic branch point in E(Z) may exist at Z = Zg

e Critical charge Z., is a value of Z for which the ionization
energy [(Z=2,)=0

= essential singularity at most in E(Z) may exist,
ZB 75 Zer
(2¢) _
Zy ' = 0.911028224077

He: Drake et al, PRL (2014) and Olivares Pilon - Turbiner, PLA
(2015)



o At large Z — celebrated 1/Z-expansion:

1
E(Z) = —ByZ?+ BiZ+ By + o<?>

> B?¢) = _0.15766642946915

B(()2e) _ 1’ B§2e) _ 5

(short dramatic story: it must be convergent series (the Kato
Theorem), asymptotics of coeffs is not analytically established yet
as well as positions and type of singularities)



of H —

About 1/Z: Make a rescaling r — >
N 1 1 1 1\ 1
— — (A 4+ A — — — — - =
H 2( 1+ A) P P + <Z> e
A E
E— -2

e Develop perturbation theory in 1/Z

= 1
E = Zen F
n=0

e This is the famous convergent 1/Z-expansion

H
72



At Z — oo

e Exact solution, two non-interactive Hydrogen atoms:

EO = —Z2

1/Z-expansion is perturbation theory from two
Hydrogen atoms!

e Correlation energy

E. = E+2Z?



€ =
€ =
€ =
€3 =
€4 =
€5 =
€6
e =
g =

€ =
€10 =
€20 =
€30 =
€40 =
€50 =

—1
+5/8

—0.157 666 429 469 150 94
+0.008 699 031 527 989 8
—0.000 888 707 284 667 8
—0.001 036 371 847 099 2
—0.000 612 940 521 924 4
—0.000 372 175 574 257 0
—0.000 242 877 976 020 2
—0.000 165 661 052 028 2
—0.000 116 179 203 700 1
—0.000 007 686 163 321 308
—0.000 001 011 388 064 240
—0.000 000 177 418 138
—0.000 000 036 533 598

Table: First e, found by C Schwartz (Berkeley, 2013, unpublished) with
~ 3000 terms at 60-70-digit arithmetics, modified (in bold) in
comparison with ones found in Baker et al, 1990 (30-digits, 476 terms)



New |dea: INTERPOLATION

e Introduce New Variable

XN = Z-2Zg
Now both expansions, at small and large A, do not contain

fractional degrees, they are Taylor and Laurent expansions!

e Let us match two expansions constructing Two Point Pade
approximation

Ena(MZ)) = PQ’V%‘(‘S) — gPade(N + 4/N)p n (\)

ng coeffs reproduced exactly in A = 0 - Puiseux expansion

Nso coeffs reproduced exactly in A = co - Laurent expansion



Results
(1) In NRQED let us choose N =5 for ground state energy:
gPade(9/5)(\)34 =

EB + a1 A + 32)\2 + 33)\3 + 34)\4 + 35)\5 + 36)\6 + 37)\7 + 33)\8 + ag)\g
1+ by A+ bpAZ + b3 A3 + by A% + bg\®

— (3+4) exact coeffs plus eight free parameters
hence, eight points are needed to be used in interpolation only

e gPade(9/5)()\)3,4 reproduces 12-13 s.d. for all physics
domain of Z < 50 (for two-electron case, He-like) and Z < 20
(for three electron case, Li-like)

e Larger N > 5 should lead to even higher accuracies
The problem is solved, but why such a high accuracy is reached in
so complicated problem? - open question!



[1,—0.527751016544 37719659081456674751138304502]

[2,—-2.903724377034 11959831115924519440444669690537]
[3,—7.279913412669 30596491945922100661168257235]
[4,—13.655566238423 53670208173019461215939136060]
[5,—22.030971580242 78154165570204356687037977599]
[6,—32.406246601898 53031055735796953025456601697 |
[7,—44.781445148772 70464518576084895405677602812]
[8, —59.156595122757 92555854989244555952770090785]
[9,—75.531712363959 49110487801557953357656090977]

[10, —93.906806515037 54942146918418000024106665170]



(1) Let us choose N =0

e Forth degree polynomial

gPade(4/0)(\)21 = Eg — a2)? — a3\ — BoA*

2, = (0) 1.18489 (3.48521) , a3 = (0) 0.000027 (0.002469)

e reproduces 3-4 s.d. (~ 99.9%) in the whole physics domain of
Z < 50 for 1-, 2-, 3-electron atoms (ions).

Hence, it describes non-relativistic QED ground state energy
in its domain of applicability!



(111) Majorana formula: N =0,a, =0

Eﬁ)(Z) = —eZ’+eZ+e, =1
(E Majorana, circa 1930, from unpublished notes for He-like ions)

If

enir = 0.624583 | ey = —0.153282

for He-like sequence, or

ENZ) = —0Z’+eZ+e, e=09/8
erie = 1023260 , e = —0.416432

for Li-like sequence,

o It reproduces 3-4 s.d. (~ 99.9%) in the whole physics
domain of Z < 50 for 1-, 2-, 3-electron atoms-ions.

— What is physics reason behind or is it a pure phenomenology ?



[1,—0.527 751016544 37719659081456674 751138304502
[2, —2.903 724377034 11959831115924519440444669690537]
[3, —7.279913412669 30596491945922100661168257235]
[4, —13.655 566238423 58670208173019461215939136060]
[5, —22.030 971580242 78154165570204356687037977599]
[6, —32.406 246601898 53031055735796953025456601697]
[7, —44.781 445148772 70464518576084895405677602812]
[8, —59.156 595122757 92555854989244555952770090785]
[9, —75.531 712363959 49110487801557953357656090977]
[10, —93.906 806515037 54942146918418000024106665170]



Relativistic + QED corrections to energy vs Z

First 3 significant digits (figures):

DItk — (~7.174+11.046 Z—7.976 Z2+3.749 Z°~1.324 Z*)x 10~°

— for He-like ions for Z € [1,50]

Daep© = (—37.22+26.33 Z—5.925 7°+0.8735 Z>—0.1629 Z*) x 10~*

— for Li-like ions for Z = 3 and Z € [10, 20]
(no reliable calculations for Z € [4,9])



Two questions

(I) Will Majorana formula work for excited states of Helium
sequence?

For some states - Yes! (lowest spin-triplet state)
(1) Will Majorana formula work for k-electron ions?

For kK = 3 - Yes!



What about wave function for
NRQED ground state in its domain of applicability?

1 N
\UO = 5(1 + P12) [(1 —an + bf12) e—aZrl—,BZrz] e’

where P;, permutation and

1 -+ Ar12
1 + Bl’lz

fio = o
(J.C. del Valle, D.J. Nader, J.C. Lopez Vieyra, AV.T.)

It solves the problem: for any Z € [1,20], 4-5 s.d. in energy
are exact and for 6 expectation values 2-3 s.d. are exact;
all 7 parameters are smooth, easy fitted functions of Z



e continuation

Relative deviation from exact function

\U _wexac —
‘¥ < 1073 for Vr

exact

One can introduce the effective potential of NRQED

AV,
Vo

Ver =

it reproduces the Coulomb singularities and tends to
constant(s) at large r, deviates from original potential at
r ~ 1 —, pert theory in deviation (V — V) is convergent!



How to go beyond domain of applicability of
NRQED?

using perturbation theory

e “quantum corrections” wrt deviation (V — Vi)
(or variationally, standard way)

e relativistic, in powers v/c

e QED, in powers of «



